A NOTE ON THE USE OF COEFFICIENT OF VARIATION IN ESTIMATING MEAN

BY

L.N. UPADHYAYA AND S.R. SRIVASTAVA

Banaras Hindu University, Varanasi

(Received: July, 1975)

Let \bar{x} and s^2 be the sample mean and the sample variance based on n sample observations drawn from a population with mean \bar{X} and variance σ^2 . In order to estimate \bar{X} , Searles[1] proposed an estimator

$$^{\frac{\hat{\lambda}}{X}} 1 = \frac{n}{n+C} \bar{x}, \qquad ...(1)$$

where

$$C\left(=\frac{\sigma^2}{\bar{X}^2}\right)$$

is the square of coefficient of variation.

The mean-squared error of the estimator \overline{X}_1 is smaller than the variance of the sample mean \overline{x} .

But, in practice, C is seldom known leaving the estimator (1) to be of no practical utility. In such a situation Srivastava[2] suggested

to replace C in \hat{X}_1 by its consistent estimator. One of the estimators considered by Srivastava[2] is

$$\sum_{X=0}^{N} 2 = \overline{x} - \frac{s^2}{n\overline{x}} \qquad \dots (2)$$

In this note, we consider a slightly more general class of estimators for the mean as

$$\bar{X} = \bar{x} + K \frac{s^2}{n\bar{x}}, \qquad \dots (3)$$

where K is the characterising scalar to be chosen suitably.

It is obvious that (2) is a special case of (3) when K=-1. If K=0, we get the usual unbiased estimator.

The bias and the mean-squared error of $\hat{\vec{x}}$ are:

Bias
$$(\frac{\Lambda}{\bar{X}}) = \frac{K}{n} E\left(\frac{s^2}{\bar{x}}\right),$$
 ...(4)

$$MSE(\frac{\Lambda}{X}) = (1 + 2K) \frac{\sigma^2}{n} - 2K \frac{\overline{X}}{n} E\left(\frac{s^2}{\overline{x}}\right) + \frac{K^2}{n^2} E\left(\frac{s^2}{\overline{x}}\right)^2 \qquad ...(5)$$

Following the method of large sample approximations as discussed in Srivastava[2], we get the bias and the mean-squared error of \overline{X} , to order $0(n^{-2})$,

Bias
$$(\overline{X}) = \frac{K}{n} C \overline{X} \left[1 + \frac{1}{n} \left(C - \sqrt{\beta_1 C} \right) \right], \dots (6)$$

$$MSE_{\overline{X}} = \frac{\sigma^2}{n} \left[1 + \frac{K}{n} \left\{ (K-2)C + 2\sqrt{\beta_1 C} \right\} \right], \qquad ...(7)$$

where

$$\beta_1 \left(= \frac{{\mu_3}^2}{\sigma^6} \right)$$

is the coefficient of sknewness of the population.

From (7), the relative efficiency of \bar{X} with respect to \bar{x} is

REF
$$(\overline{X}, \overline{x}) = \frac{1}{\left[1 + \frac{K}{n} \left\{ (K-2)C + 2\sqrt{\beta_1 C} \right\} \right]} \dots (8)$$

Now, it follows that the proposed estimator \vec{X} is more efficient than \vec{x} if we choose K such that it lies between 0 and

$$2\left[1-\sqrt{\frac{\overline{\beta_1}}{C}}\right].$$

If we minimize (7) with respect to K, we find

$$K=1-\sqrt{\frac{\overline{\beta_1}}{C}}=K_{min} \text{ (say)} \qquad ...(9)$$

and, for this value of K, the mean-squared error, to order $O(n^{-2})$, is given by

$$MSE\left(\frac{\Lambda}{X}/K_{min}\right) = \frac{\sigma^2}{n} \left[1 - \frac{C}{n} \left(1 - \sqrt{\frac{\beta_1}{C}}\right)^2\right] ...(10)$$

In estimating the mean of symmetrical distributions ($\beta_1=0$) by estimators of the form $\bar{X}^{\hat{N}} = \bar{x} + K \frac{s^2}{n\bar{x}}$, the minimum mean-squared error is attained at K=1; therefore the estimator \bar{X}_2 considered by Srivastava[2] does not possess this property. Moreover, for 0 < K < 2 the proposed estimator has mean-squared error smaller than the variance of the unbiased estimator \bar{x} .

REFERENCES

- [1] Searles, D.T.

 The Utilization of a Known Coefficient of Variation in Estimation Procedure Journ. Amer. Stat. Assn., Vol. 59, 1964, pp. 1225-6.
- [2] Srivastava, V.K.: On the Use of Coefficient of Variation in Estimating Mean Journ. Ind. Soc. Agri. Stat., Vol. XXVI No. 2. 1974, pp. 33-36.