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SUMMARY

Autoregressive integrated moving average with exogenous variable - Generalized autoregressive conditional heteroscedastic
(ARIMAX-GARCH) methodology is employed here for describing volatile data by incorporating exogenous variables in the
mean-model. Brief description of this model along with its estimation procedure is given. As an illustration, ARIMAX and
ARIMAX-GARCH models are employed for modelling and forecasting of wheat yield of Kanpur district of Uttar Pradesh,
India. Comparative study of the fitted models is carried out from the viewpoint of dynamic one-step ahead forecast error variance
along with Mean square prediction error (MSPE), Mean absolute prediction error (MAPE) and Relative mean absolute prediction
error (RMAPE). The formulae for more than one-step ahead out-of-sample forecasts along with forecast error variances for
ARIMAX-GARCH model are derived analytically by recursive use of conditional expectation. Its superiority over ARIMAX

approach is demonstrated for the data under consideration.
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1. INTRODUCTION

Quantitative understanding of crop responses to
climate requires development of statistical models for
various characteristics of a crop by taking into account
its time-series behaviour along with exogenous climate
factors. The response of interest (e.g. crop yield) as the
response variable and various climate related quantities
(e.g. growing season’s rainfall, average monthly
temperature) as the predictor variable(s) need to be
considered for model building. It is well-known that one
of the main factors causing yields to change from year
to year is climate variability— no two growing seasons
experience exactly the same weather (Lobell et al.
2006). When forecasting is carried out for dynamic
behaviour of crop yield, it should be able to take
advantage not only of historical data, but also of the

impact of various driving forces, like temperature,
precipitation, and relative humidity from the external
environment. The key problem is how to incorporate
pertinent external information into the forecasting
process and subsequently into the decision making
process. Lobell et al. (2006) developed weather-based
yield forecast model for 12 Californian crops. The
authors combined weather and yield data in a linear
regression model to test how well yield anomalies could
be predicted before harvest based on monthly weather
measurements. Lobel and Burke (2010) used both
simple regression model as well as panel regression
models to predict crop yield responses to climate
change. Bratina and Faganel (2008) employed
ARIMAX model for forecasting primary demand for a
beer brand in Slovenia.
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The second concern regarding forecasting of crop
yield is the presence of heteroscedasticity. Most studies
on crop yields either tend to ignore it or handle it
improperly. Simple linear time trend as well as time-
series models usually encounter variances that change
over time. The Autoregressive conditional
heteroscedastic (ARCH) model was proposed by R.F.
Engle in 1982 and was applied to estimate the variance
of inflation in U.K. It allows the conditional variance
to change over time as a function of squared past errors,
leaving the unconditional variance constant. As
emphasized by Jaffee (2005), volatility seems to be the
norm rather than exception due to variations in climatic
conditions, and the rapidity with which producers can
respond to price changes, etc. The combination of
ARCH specification for conditional variance and
Autoregressive (AR) specification for conditional mean
has many appealing features, including a better
specification of the forecast error variance. Ghosh and
Prajneshu (2003) employed AR(p)-ARCH(g)-in-Mean
model for carrying out modelling and forecasting of
volatile monthly onion price data.

However, ARCH model has some drawbacks.
Firstly, when the order of ARCH model is very large,
estimation of a large number of parameters is required.
Secondly, conditional variance of ARCH(q) model has
the property that unconditional autocorrelation function
(ACF) of squared residuals, if it exists, decays very
rapidly compared to what is typically observed, unless
maximum lag ¢ is large. To overcome these difficulties,
Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also
a linear function of its own lags. This model is also a
weighted average of past squared residuals, but it has
declining weights that never go completely to zero. It
gives parsimonious models that are easy to estimate
and, even in its simplest form, has proven surprisingly
successful in predicting conditional variances. The most
popular GARCH model in applications is GARCH (1,1)
model. Paul ef al. (2009) compared the efficiency of
ARIMA-GARCH model vis-a-vis ARIMA model in
respect of modelling and forecasting of India’s volatile
monthly spices export data. A good description of
nonlinear time-series models and their applications is
given by Prajneshu (2012).

In this paper, we have studied ARIMAX and
ARIMAX-GARCH models along with procedures for

estimation of their parameters. Formulae for more than
one-step ahead out-of-sample forecasts along with
forecast error variances for ARIMAX-GARCH model
are derived analytically by recursive use of conditional
expectation. As an illustration, these are applied for
modelling and forecasting of wheat yield data of
Kanpur District of Uttar Pradesh, India.

2. DESCRIPTION OF MODELS

2.1 ARIMAX Model

ARIMAX model (Bierens 1987) is a
generalization of ARIMA model and is capable of
incorporating an external input variable (X). Given a
(k + 1) - time-series process {(y, x,)}, where y, and k
components of x, are real valued random variables,
ARIMAX model assumes the form

0O & O a O & 0
ﬁ_zasl—sﬁyt = U +ZﬁsLSxt +U-+ZVSLSDet R (1)
=i s=1 0 sz |

where L is the usual lag operator (L%, =y, , L'x,
=X, etc.), uOR, a, OR, B, OR* and y,00R are
parameters, e ’s are errors, and p, ¢ and r are natural
numbers specified in advance. The first step in building
an ARIMAX model consists of identifying a suitable
ARIMA model for the endogenous variable. The
ARIMAX model concept requires testing for

stationarity of exogenous variable before modelling.

2.2 Estimation of Parameters of ARIMAX Model

Nonlinear least squares method is employed to
estimate the parameters of ARIMAX model. Following
Bierens (1987), equation (1) can be written as follows:
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Now equation (1) can be written as an ARX( o0 )
model:

Ve = 0(0)+ 3 715(8) zies +er. @)
s=1

Assuming that only z,, ..., z, are observed,
nonlinear least squares estimator of @, can be obtained
as follows:

Let
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After estimating the parameters of ARIMAX model,
residuals are used for testing for ARCH effects by
employing ARCH-Lagrange Multiplier (ARCH-LM)
test due to Engle (1982), as described below.

2.3 Testing for ARCH Effects

Let € be the residual series. The squared series

{g?} is then used to check for conditional

heteroscedasticity, which is also known as the ARCH
effects. To this end, two tests, briefly discussed below,
are available. The first one is to apply the usual Ljung-

Box statistic Q(m) to the {g?} series. The null
hypothesis is that the first m lags of autocorrelation
functions of the {&?} series are zero. The second test

for conditional heteroscedasticity is the LM test, which
is equivalent to usual F-statistic for testing e ;: &, =0,
i=1,2, ..., q in the linear regression

i

2 _ 2 2 _
& = agtagsg t. tage g te, L =gt 1, ..., T(3)

where e, denotes error term, g is prespecified positive
integer, and 7 is sample size. Let SSR,

T
= z (2 - @)%, where @ =
t=q+1

.
z EtZ/T is sample
t=q+1

T
Z &, where & is least
t=gq+l

mean of (g?),and SSR =

squares residual of (3). Then, under e :
F = (SR -SR)/q
SR(T-q-1)

is asymptotically distributed as chi-squared distribution
with ¢ degrees of freedom. The decision rule is to reject

e, if F >X§(a), where )(g(a) is the upper 100(1 —

a)™ percentile of )(5 or, alternatively, the p-value of

F is less than a.

2.4 GARCH Model

The ARCH(gq) model (Engle 1982) for the series
{&,} is defined by specifying the conditional distribution
of €, given information available up to time 7 — 1. Let
Y, , denote this information. Then, ARCH (¢g) model
for the series {¢,} is given by

& |wie1~ N(OA) 4

q
h=a+% as, (5)

1=1
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where a,> 0, a,2 0 forall i and Z g <1 are required
=1

to be satisfied to ensure nonnegativity and finite

unconditional variance of stationary {¢} series.

Bollerslev (1986) proposed the Generalized ARCH

(GARCH) model has the following form

&,

&t

q p
h 3O+Zai5t2—i +zEjht—j- (6)
J=1

1=1

where & ~ IID (0, 1). A sufficient condition for the
conditional variance to be positive is

a,>0,a,20,i=1,2, ...,q.bj.ZO,j=1,2, s P

The GARCH (p, ¢) process is weakly stationary
if and only if

a3 -
As (6) is a more parsimonious model of the

conditional variance than a high-order ARCH model,
most users prefer it to the simpler ARCH alternative.

”M'D

2.5 Estimation of Parameters for GARCH Model

Similar to the estimation of parameters of ARMA
models, most frequently used estimators for ARCH/
GARCH models are those derived from a (conditional)
Gaussian likelihood function. The loglikelihood
function of a sample of 7 observations, apart from
constant, is

T

Lr(6) =Ty (logh +a2r™ ).
where -

q p
=+ asli+ ) Ehj.
=1 =

For a general GARCH model, conditional variance
(h,) cannot be expressed in terms of a finite number of
past observations. Some truncation is inevitable. By
induction, it is possible to derive

q q
h=a/(1-3a)+) ae
1=1 1=1
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where the multiple sum vanishes if ¢ = 0. It may be
noted that the multiple sum above converges with
probability 1 since each g, and b, is nonnegative, and
expected value of the multiple series is finite. In
practice, above expression of /1, £ > g, is replaced by
the truncation version

5 g q
h=ap/(1-) &)+ ast
1=1 1=1
4 ®© p P
tHay > > by AR
=1 k=1j;=1 =1
(t=i - j1 ..~ jx 21).

In general, suppose that f (.) is the probability
density function of €. However, generally, maximum
likelihood estimators are derived by minimizing

_12 (Zog\/z —Zogf(st/\/Z)) ,

where h, is the truncated version of /4, (Fan and Yao

Ly (6)=T

2003). For heavy tailed error distribution, Peng and Yao
(2003) proposed Least absolute deviations estimation

T
(LADE) which minimizes Z‘Iogstz —log (ht )‘, where
t=v

v=p+1,ifg=0andv>p+1,if ¢ > 0. Fan and Yao
(2003) and Straumann (2005) have given a good
description of various estimation procedures for
conditionally heteroscedastic time-series models.

The Akaike information criterion (AIC) and
Bayesian information criterion (BIC) values for
GARCH model with Gaussian distributed errors are
computed by

T ~ ~
aic =Y (logh +&2it)+ 2p+q+1)

t=1

and

.
BIC=Y (Iogﬁ +sfﬁt_l)+ 2(p+q+1Dlog(T —v+1)
t=1
(7

where T is the total number of observations. Evidently,
likelihood equations are extremely complicated.
Fortunately, parameter estimates can be obtained by
using a software package, like EViews, SAS, and
MATLAB.
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3. AN ILLUSTRATION

Annual wheat yield data of Kanpur district of Uttar
Pradesh, India during 1972 to 2011 comprising 40 data
points are obtained from Directorate of Economics and
Statistics, Government of India. The first 36
observations, i.e. the data from 1972 to 2007 are used
for model building and remaining 4 data points, i.e. the
data from 2008 to 2011 are used for validating the
model. Daily climate data on maximum temperature for
the same time period, obtained from India
Meteorological Department, Government of India, is
first converted to weekly data. It may be noticed that
wheat yield data vary from a minimum of 9.78 quintals
per hectare in 1974 to a maximum of 34.80 quintals per
hectare in 2011. It may be noted that the yield was
29.12 quintals per hectare in 1990 and in the very next
year, it suddenly got down to 21.25 quintals per hectare
and again in the next year, it jumped to the value of
30.62 quintals per hectare. All this implies possible
presence of conditional heteroscedasticity in the yield
data. On exploratory data analysis, it is seen that wheat
yield is significantly negatively correlated with
maximum temperature at the Critical Root Initiation
(CRI) stage of wheat crop every year with correlation
coefficient —0.49. In India, the CRI stage comes roughly
21 days after sowing of wheat crop, i.e. in the third
week of November every year. SAS software Ver. 9.3
and EViews software Ver. 7 are used for data analysis.

3.1 Fitting of ARIMAX Model

Evidently, data set of wheat yield is not stationary
and so it requires to be differenced. In order to select
order of the ARIMA model, unit root test proposed by
Dickey and Fuller (1979) is applied for parameter p in
the auxiliary regression

DY, = PYi-1 t 01D Y +E;- (®)

The relevant null hypothesis is e | = p= 0 and the
alternative hypothesisise , : p<0.

In the present situation, estimate of p is —0.64
with calculated z-statistic as —4.62, which is less than
the critical value of ¢ at 5% level of significance, i.e.
—1.95 (Franses 1998, Page 82). Therefore, e is not
rejected at 5% level and so p = 0. Thus, there is
presence of one unit root and so differencing is
required. On the other hand, time-series data of
maximum temperature at third week of November is

found to be stationary. On the basis of minimum AIC
and BIC values, best ARIMAX(1, 1, 1) model is given

by

Ay, =1736-061x - 02347y, —0.78¢ , +¢.
(2.84) (0.10)  (0.17) (0.09)

where the values in parentheses denote standard errors

of the corresponding parameter estimates. For visual

display, fitted model along with data points is exhibited
in Fig. 1.
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Fig. 1. Fitted ARIMAX model along with data points

3.2 Fitting of ARIMAX-GARCH Model

Residuals of fitted ARIMAX model are used for
testing the presence of ARCH effect. The
autocorrelation function (ACF) and partial
autocorrelation function (PACF) of squared
standardized residuals of fitted ARIMAX model are
reported in Table 1. A perusal indicates that squared
standardized residuals at lags 3 and 11 are significant.
Accordingly, ARCH-LM test is applied to test the
presence of ARCH effect and it is found that the test is
significant at 5 % level at both the lags. Because of

Table 1. ACF and PACF of Squared standardized residuals

of fitted ARIMAX model
Lag ACF PACF | Lag| ACF PACF
1 0.066 0.066 9 |-0.109 | —0.147
2 0.186 0.182 10 0.030 0.087
3 -0.379 | -0.209 | 11 | -0.261 | —0.267
4 -0.101 [ —0.115 12 | —0.042 | —0.100
5 -0.145 | -0.061 13 0.033 0.142
6 —-0.005 0.018 14 0.042 | —0.075
7 0.025 0.029 | 15 | -0.063 | —0.199
8 -0.046 | —0.111 16 | -0.001 | —0.027
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parsimony property of GARCH model, instead of
ARCH model, ARIMAX-GARCH model is fitted. The
estimates of parameters of ARIMAX-GARCH model
are presented in Table 2 and fitted model along with
data points is exhibited in Fig. 2.

Table 2. Parameters estimates for fitted ARIMAX-GARCH

model.
Mean Equation
Variable Coefticient | Standard | #-Statistic| Probability
Error
C 18.79 840 [ 2235 | 0.025
MAXT NOV3 —-0.67 0.33 [-2.207 | 0.027
AR(1) —-0.66 0.14 | -4.676 | <0.001
Variance Equation
C 12.00 5.201| 2.307 | 0.021
ARCH(1) 0.31 0.142 | 2.120 | 0.028
GARCH(1) 0.58 0.249 | 2.320 | 0.009
38
33
28
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Fig. 2. Fitted ARIMAX-GARCH model along with data points.
4. OUT-OF-SAMPLE FORECASTS

Suppose &, is the residual of the fitted ARIMAX-
GARCH model, Y, is differenced series and X, is the
exogenous variable. Consider ARIMAX (1,0,1) model:

V=Pt pY, R e, ®)
where
&= h1/2’7tv h, =a,+a 5t2-1 tBh,. )

Let F' denote the information up to time 7" Then,
optimal one-step ahead forecast of Y., | given F is

YAT"'IIFT = E[Yp|Ff =Py + o Y+ pXpy (10)

where estimated one-step ahead forecast error variance
is given by

hy =0y +Q 5T2 + By (1)

From equation (10), one-step ahead predictor

Y. LR, Of Y7y, given Fu | can be estimated by

Vieor, = Pot AVrar, + 02 X142 (12)

Now, one-step ahead prediction error variance of

Y, ., given I, can be estimated by taking conditional

T
expectation of &2, given F. 1~ A straightforward algebra,

using equation (11), yields

ﬁT+2 = GO+(C{1 +B1)h7+1- (13)

Proceeding along similar lines as above, optimal
one-step ahead forecast of Y, ; given F, , is obtained
as

+3

Yriar,, = L7l Frool =00+ oYy + 0 Xy,

(14)
which can be estimated by
YAT+3||:T+2 = ,00 + p]_YAT+2|FT + pZXT+31 (15)

where ?T+2|Fr is the conditional expectation of Y, , ,

given F, . It can be obtained by using recursive
conditional expectation approach as

YAT+2|FT =Po +:01YAT+]]FT + 0o X742

Proceeding along similar lines as above,
expression for hy,, is derived as

hrag = (1 +a, + B)+h (a,+ B  (16)

In general, the optimal one-step ahead forecast is
given by

=Pyt P Yy T P (17)

which can be estimated by

YT+i|FT+i—1

YAT+i|FT+H = Po +RI.YAT+i AR TP XT 4, (18)
Ytk = Po + P¥raiar + 02X 4. (19)

Further, the estimated one-step ahead forecast error
variance is given by
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hrai = Q1+ —2) (@, + B)) + Ay (a, + B
(20)

Using above equations, one-step ahead forecasts
of wheat yield along with their corresponding standard
errors within brackets () for the hold-out data, i.e. the
data during 2008-"11 in respect of above fitted models
are reported in Table 3. A perusal indicates that, for
fitted ARIMAX-GARCH model, all the forecast values
lie within one standard error of forecasts. However, this
attractive feature does not hold for fitted ARIMAX
model.

Table 3. One-step ahead forecasts of wheat yield
(Quintal/Hectare) for hold-out data

Forecasts by models
Years Actual ARIMAX ARIMAX-
yield GARCH(1,1)
2008 26.66 26.72 (2.19) 26.63 (2.23)
2009 29.40 27.76 (2.19) 28.38 (3.91)
2010 31.50 29.43 (2.19) 29.37 (4.12)
2011 33.80 30.80 (2.19) 32.35 (4.96)

The Mean square prediction error (MSPE), Mean
absolute prediction error (MAPE) and Relative mean
absolute prediction error (RMAPE) values for fitted
ARIMAX-GARCH model are respectively computed as
1.76, 0.90, and 2.76%, which are found to be much
lower than the corresponding ones for fitted ARIMAX
model, viz. 4.67, 1.44, and 4.38% respectively. Lower
values of all the three statistics reflect the superiority
of ARIMAX-GARCH approach for forecasting
purposes also. Finally, using equations (19) and (20),
out-of sample forecasts of wheat yield along with
corresponding forecast error variances for the years
2012-2015 are computed and the same are reported in
Table 4.

Table 4. One-step ahead out-of-sample forecasts of wheat
yield (Quintal/Hectare) for fitted ARIMAX-GARCH model

Years Forecast Standard error
2012 34.03 5.64
2013 34.24 6.02
2014 34.60 6.75
2015 35.21 7.23

5. CONCLUDING REMARKS

In this article, heteroscedastic time-series data of
wheat yield of Kanpur district of Uttar Pradesh, India
is modelled by considering most important factor, i.e.
Maximum temperature at critical root initiation stage
of wheat crop, which occurs at 3™ week of November
every year as explanatory variable in ARIMAX-
GARCH model. Formulae for i"-step ahead out-of-
sample forecasts along with forecast error variances are
derived analytically and are applied to real data. It is
found that ARIMAX-GARCH model outperforms
ARIMAX model so far as modelling and forecasting
of wheat yield is concerned. This type of study would
go a long way in helping the planners to make optimum
decisions about export and import policies. Finally, the
methodology advocated here is very general and can be
used for modelling and forecasting of any crop yield
exhibiting volatility by appropriately identifying the
exogenous variables.
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